Биохимия

Биоорганическая химия


Полисахариды. Крахмал, Целлюлоза.


На этой странице мы рассмотрим несахароподобные полисахариды.


Полисахариды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов.


Важнейшие представители несахароподобных полисахаридовкрахмал и целлюлоза (клетчатка).


Эти углеводы во многом отличаются от моно- и олигосахаридов. Они не имеют сладкого вкуса, большинство из них не растворимо в воде. По этой причине их называют несахароподобными (в отличие от сахароподобных олигосахаридов, которые также относятся к полисахаридам).


Олигосахариды имеют знаительно меньший размер молекул и свойства, близкие к моносахаридам.


Несахароподобные полисахариды представляют собой высокомолекулярные соединения, которые под каталитическим влиянием кислот или ферментов подвергаются гидролизу с образованием более простых полисахаридов, затем дисахаридов и, в конечном итоге, множества (сотен и тысяч) молекул моносахаридов.


Химическое строение полисахаридов.


По химической природе полисахариды стоит рассматривать как полигликозиды (полиацетали). Каждое звено моносахарида связано гликозидными связями с предыдущим и последующим звеньями.


При этом для связи с последующим звеном предоставляется полуацетальная (гликозидная) гидроксильная группа, а с предыдущим – спиртовая гидроксильная группа.



Амилоза


На конце цепи находится остаток восстанавливающегося моносахарида. Но поскольку доля концевого остатка относительно всей макромолекулы весьма невелика, то полисахариды проявляют очень слабые восстановительные свойства.


Гликозидная природа полисахаридов обусловливает их гидролиз в кислой и высокую устойчивость в щелочной средах.


Полисахариды имеют большую молекулярную массу. Им присущ характерный для высокомолекулярных веществ более высокий уровень структурной организации макромолекул.


Наряду с первичной структурой, т.е. определённой последовательностью мономерных остатков, важную роль играет вторичная структура, определяемая пространственным расположением молекулярной цепи.


Классификация полисахаридов.


Полисахариды можно классифицировать по разным признакам.


Полисахаридные цепи могут быть:


  • разветвлёнными или
  • неразветвлёнными (линейными).

Также, различают:


  • гомополисахаридами - полисахариды, состоящие из остатков одного моносахарида,
  • гетерополисахариды - полисахариды, состоящие из остатков разных    моносахаридов.

Наиболее изучены гомополисахариды.


Их можно разделить по их происхождению:

  • гомополисахариды растительного происхождения
  •      - Крахмалл,
         - Целюлоза,
         - Пектиновые вещества и т.д.
  • гомополисахариды животного происхождения
  •      - Гликоген,
         - Хитин и т.д.
  • гомополисахариды бактериального происхождения
  •      - Гекстраны.

Гетерополисахариды, к числу которых относятся многие животные и бактериальные полисахариды, изучены меньше, однако они играют важную биологическую роль.


Гетерополисахариды в организме связаны с белками и образуют сложные надмолекулярные комплексы.


Для полисахаридов используется общее название гликаны.


Гликаны могут быть:

  • гексозанами (состоят из гексоз),
  • пентозанами, (состоят из пентоз).

В зависимости от природы моносахарида различают:

  • глюканы (в основе – моносахарид глюкоза),
  • маннаны (в основе – моносахарид манноза),
  • галактаны (в основе – моносахарид галактоза) и т.п.

Крахмал


Крахмал (С6Н10О5)n – белый (под микроскопом зернисый) порошок, нерастворимый в холодной воде. В горячей воде крахмал набухает, образуя коллоидный раствор (крахмальный клейстер). С раствором йода даёт синее окрашивание (характерная реакция).


Крахмал образуется в результате фотосинтеза, в листьях растений, и запасается в клубнях, корнях, зёрнах.


Химическое строение крахмала

Крахмал представляет собой смесь двух полисахаридов, построенных из глюкозы (D-глюкопиранозы): амилозы (10-20%) и амилопектина (80-90%).


Дисахаридным фрагментом амилозы является мальтоза. В амилозе D-глюкопиранозные остатки связаны альфа(1-4) гликозидными связями.



Амилоза и амилопектин


По данным рентгеноструктурного анализа макромолекула амилозы свёрнута в спираль. На каждый виток спирали приходится 6 моносахаридных звеньев.


Амилопектин в отличие от амилозы имеет разветвлённое строение.

В цепи D-глюкопиранозные остатки связаны альфа(1-4)-гликозидными связями, а в точках разветвления - бета(1-6)-гликозидными связями. Между точками разветвления располагается 20-25 глюкозидных остатков.


Цепь амилозы включает от 200 до 1000 глюкозных остатков, молекулярная масса
160 000. Молекулярная масса амилопектина достигает 1-6 млн.


Гидролитическое расщепление крахмала.

В пищеварительном тракте человека и животных крахмал подвергается гидролизу и превращается в глюкозу, которая усваивается организмом.


В технике превращение крахмала в глюкозу (процесс осахаривания) осуществляется путём кипячения его в течение нескольких часов с разбавленной серной кислотой. Впоследствии серную кислоту удаляют. Получается густая сладкая масса, так называемая крахмальная патока, содержащая, кроме глюкозы, значительное количество других продуктов гидролиза крахмала. Патока применяется для приготовления кондитерских изделий и различных технических целей.


Если требуется получить чистую глюкозу, то кипячение крахмала ведут дольше. Этим достигается более высокая степень гидролиза крахмала.


При нагревании сухого крахмала до 200-500 град. С происходит частичное разложение его и получается смесь менее сложных, чем крахмал полисахаридов, называемых декстринами.


Разложением крахмала на декстрины объясняется образование блестящей корки на печёном хлебе. Крахмал муки, превращённый в декстрины, легче усваивается вследствие большей растворимости.


Гликоген


В животных организмах этот полисахарид является структурным и функциональным аналогом растительного крахмала.


Откладывается в виде гранул в цитоплазме во многих типах клеток (главным образом печени и мышц).


Химическое строение гликогена.

По строению гликоген подобен амилопектину (структурную формулу см. выше). Но молекулы гликогена значительно больше молекул амилопектина и имеют более разветвленную структуру. Обычно между точками разветвления содержится 10-12 глюкозных звеньев, а иногда даже 6.


Сильное разветвление способствует выполнению гликогеном энергетической функции, так как только при наличии большого числа концевых остатков можно обеспечить быстрое отщепление нужного количества молекул глюкозы.


Молекулярная масса у гликогена необычайно велика. Измерения показали, что она равна 100 млн. Такой размер макромолекул содействует выполнению функции резервного углевода. Так, макромолекула гликогена из-за большого размера не проходит через мембрану и остаётся внутри клетки, пока не возникнет потребность в энергии.


Функции гликогена в метаболизме.

Гликоген является основной формой хранения глюкозы в животных клетках.


Гликоген образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы.


Гликогеновый запас, однако, не столь ёмок в калориях на грамм, как запас триглицеридов (жиров). Он имеет скорее локальное значение. Только гликоген, запасённый в клетках печени (гепатоциты) может быть переработан в глюкозу для питания всего организма.


Гидролиз гликогена в кислой среде протекает очень легко с количественным выходом глюкозы.


Аналогично гликогену в животных организмах, в растениях такую же роль резервного полисахарида выполняет амилопектин, имеющий менее разветвлённое строение. Меньшая разветвлённость связана с тем, что в растениях значительно медленнее протекают метаболические процессы и не требуется быстрый приток энергии, как это иногда бывает необходимо животному организму (стрессовые ситуации, физическое или умственное напряжение).


Целлюлоза (клетчатка)


Целлюлоза – наиболее распространённый растительный полисахарид. Она обладает большой механической прочностью и выполняет роль опорного материала растений.


Наиболее чистая природная целлюлозахлопковое волокно – содержит 85-90% целлюлозы. В древесине хвойных деревьев целлюлозы содержится около 50%.


Химическое строение целлюлозы

Структурной единицей целлюлозы является D-глюкопираноза, звенья которой связаны бета(1-4)-гликозидными связями.



Целлюлоза


Биозный фрагмент целлюлозы представляет собой целлобиозу. Макромолекулярная цепь не имеет разветвлений, в ней содержится от 2500 до 12 000 глюкозных остатков, что соответствует молекулярной массе от 400 000 до 1-2 млн.


Бета-Конфигурация аномерного атома углерода приводит к тому, что макромолекула целлюлозы имеет строго линейное строение. Этому способствует образование водородных связей внутри цепи, а также между соседними цепями.


Такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу прекрасным материалом для построения клеточных стенок растений.


Целлюлоза не расщепляется обычными ферментами желудочно-кишечного тракта, но она является необходимым для питания баластным веществом.


Использование целлюлозы

Значение целлюлозы очень велико. Достаточно указать, что огромное количество хлопкового волокна идёт для выработки хлопчатобумажных тканей.


Из целлюлозы получают бумагу и картон, а путём химической переработки – целый ряд разнообразных продуктов: искусственное волокно, пластические массы, лаки, этиловый спирт.


Большое практическое значение имеют эфирные производные целлюлозы: ацетаты (искусственный шёлк), ксантогенты (вискозное волокно, целлофан), нитраты (взрывчатые вещества, коллоксилин) и др.


Оглавление


Органическая химия

Косметическая химия

Коллоидная химия


Биохимия